

WP 11004

DETERMINATION OF WATER RESOURCE CLASSES AND RESOURCE QUALITY OBJECTIVES FOR THE WATER RESOURCES IN THE MZIMVUBU CATCHMENT

Report Number: WE/WMA7/00/CON/CLA/WKSP/0417

Published by

Department of Water and Sanitation
Private Bag X313
PRETORIA, 0001
Republic of South Africa

Tel: +27 (12) 336 7500 Fax: +27 (12) 323 0321

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source

This report should be cited as:

Department of Water and Sanitation (DWS), South Africa, 2017. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. Estuary Workshop Report. Prepared by Council for Scientific and Industrial Research for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/WKSP/0417

Compiled by:

Scherman Colloty & Associates cc. 22 Somerset Street Grahamstown 6139

DOCUMENT INDEX

Report name	Report number		
Inception Report	WE/WMA7/00/CON/CLA/0116		
Survey Report	WE/WMA7/00/CON/CLA/0216		
Status Quo and (RUs and IUA) Delineation Report	WE/WMA7/00/CON/CLA/0316		
River Workshop Report	WE/WMA7/00/CON/CLA/WKSP/0117		
River Desktop EWR and Modelling Report	WE/WMA7/00/CON/CLA/0217		
BHNR Report (Surface and Groundwater)	WE/WMA7/00/CON/CLA/0317		
Estuary Workshop Report	WE/WMA7/00/CON/CLA/WKSP/0417		
Scenario Description Report	WE/WMA7/00/CON/CLA/0517		
River EWR Report	WE/WMA7/00/CON/CLA/0617		
Estuary EWR Report	WE/WMA7/00/CON/CLA/0717		
Groundwater Report	WE/WMA7/00/CON/CLA/0817		
Wetland EcoClassification Report	WE/WMA7/00/CON/CLA/0917		
Scenario Non-ecological Consequences Report	WE/WMA7/00/CON/CLA/1017		
Ecological Consequences Report	WE/WMA7/00/CON/CLA/1117		
WRC and Catchment Configuration Report	WE/WMA7/00/CON/CLA/0118		
River and Estuary RQO Report	WE/WMA7/00/CON/CLA/0218		
Wetlands and Groundwater RQO Report	WE/WMA7/00/CON/CLA/0317		
Monitoring and Implementation Report	WE/WMA7/00/CON/CLA/0418		
Water Resource Classes and RQOs Gazette Template Input	WE/WMA7/00/CON/CLA/0518		
Main Report	WE/WMA7/00/CON/CLA/0618a		
Close Out Report	WE/WMA7/00/CON/CLA/0618b		
Issues and Response Report	WE/WMA7/00/CON/CLA/0718		

Bold indicates this report

APPROVAL

TITLE:	Determination of Water Resource Classes and Resource Quali Objectives for the Water Resources in the Mzimvubu Catchmer Estuary Workshop Report.				
DATE:	June 2017				
AUTHORS:	Taljaard, S, Van Niekerk, L, Sr SP, Turpie, JK	now, GC, Adams, JB, Forbes, N, Weerts			
EDITOR:	Gowans L				
REVIEWERS:	Project Management Team				
LEAD CONSULTANT:	Scherman Colloty & Associates	S CC.			
REPORT NO:	WE/WMA7/00/CON/CLA/WKSF	P/0417			
FORMAT:	MSWord and PDF				
WEB ADDRESS:	http://www.dws.gov.za				
Dr Patsy Scherman Study Leader					
Supported by:		Recommended by:			
Lawrence Mulangaphum Project Manager	a	Ms Lebogang Matlala Director: Water Resource Classification			
Approved for the Departr	ment of Water and Sanitation by:				
Ms Ndileka Mohapi Chief Director: Water Eco	osystems				

ACKNOWLEDGEMENTS

Project Management Team

Matlala, L DWS: Water Ecosystems; Classification Mulangaphuma, L DWS: Water Ecosystems; Classification Scherman, P-A Scherman Colloty & Associates cc Sauer, J Scherman Colloty & Associates cc

Weni, E DWS: Eastern Cape Regional Office
Weston, B DWS: Water Ecosystems; Surface Water Reserves
Neswiswi, T DWS: Water Ecosystems; Surface Water Reserves

Kganetsi, M DWS: Resource Protection and Waste

Molokomme, L DWS: Water Ecosystems; Groundwater Reserves

Muthraparsad, N DWS: Environment and Recreation

Thompson, I DWS: Integrated Water Resource Planning

Matume, M DWS: Stakeholder Engagement and Coordination Cilliers, G DWS: Resource Quality Information Services Majola, S DWS: Resource Quality Information Services

AUTHORS

The following persons contributed to this report:

Author	Company			
Taljaard, S	CSIR, Stellenbosch			
Van Niekerk, L	CSIR, Stellenbosch			
Snow, GC	Witwatersrand University			
Adams, JB	Nelson Mandela University (NMU)			
Forbes, N	Marine and Estuarine Research (MER)			
Weerts, SP	CSIR, Durban			
Turpie, JK	Anchor Environmental Consultants			

REPORT SCHEDULE

Version	Date
First draft	June 2017
Final report	

EXECUTIVE SUMMARY

BACKGROUND

The Department of Water and Sanitation (DWS) initiated a study to determine Water Resource Classes and associated Resource Quality Objectives (RQOs) for the Mzimvubu catchment in Water Management Area 7. Although Reserves are not explicitly part of the Scope of Work, Reserve data will be reviewed as part of the study. Scherman Colloty and Associates cc were appointed as the Professional Service Provider (PSP) to undertake the study.

The main aims of the project, as defined by the Terms of Reference (ToR), are to undertake the following:

- Coordinate the implementation of the Water Resources Classification System (WRCS) as required in Regulation 810 in Government Gazette 33541 dated 17 September 2010, by classifying all significant water resources in the Mzimvubu catchment,
- determine RQOs using the DWS's procedures to determine and implement RQOs for the defined classes, and
- review work previously done on Ecological Water Requirements (EWRs) and Basic Human Needs (BHN) and assess whether suitable for the purposes of Classification.

The study is currently undertaking Step 3 of the Project Plan, i.e. quantify BHN and EWRs, with the Estuary Workshop dealing with the following specific tasks related to determining Ecological Water Requirements (EWR):

 Reviewing results of the DWS 2014 Mzimvubu Estuary Reserve study and determining the Present Ecological State (PES), Ecological Importance and Recommended Ecological Category (REC).

A number of additional tasks were conducted at the workshop, which will be reported on during the study:

- Assess consequences of a selection of future development scenarios provided on the Mzimvubu Estuary as provided by the hydrologist
- Define Ecological Specification and Thresholds of Potential Concern (TPCs) for the PES and REC.
- Define monitoring requirements as pertaining to the Mzimvubu Estuary.

Results are reported in this short report for invoicing purposes.

TABLE OF CONTENTS

DOC	UME	NT INDEX	i
APP	ROV	AL	ii
ACK	NOW	LEDGEMENTS	iii
		3	
		SCHEDULE	
		VE SUMMARY	
		F CONTENTS	
		TABLES	
		FIGURES	
		MS AND ABBREVIATIONS	
		RY	
1		RODUCTION	
	1.1	BACKGROUND	1-1
	1.2	STUDY AREA	1-1
	1.3	WORKSHOP PARTICIPANTS	
2	KEY	WORKSHOP OUTPUTS	2-1
	2.1	PRESENT ECOLOGICAL STATE AND ECOLOGICAL IMPORTANCE	2-1
	2.2	CONSEQUENCES OF OPERATIONAL SCENARIOS	
	2.3	RECOMMENDATIONS	2-3
3	REF	ERENCES	3-1
4		ENDIX A: WORKSHOP AGENDA	
5	APP	ENDIX B: ATTENDANCE REGISTER	5-1

LIST OF TABLES

Table 2.1	Description of Mzimvubu present and future scenarios	2-2
Table 2.2	Workshop results on consequences of future development scenarios of	n the
Mzimvubu Estu	ıary	2-3

LIST OF FIGURES

Figure 1.1	Geographical boundaries of the Mzimvubu Estuary based on the official EFZ
(blue) ar	nd boundaries used in this EWR study (lower part in green)1-2
Figure 1.2	Zones identified for the Mzimvubu Estuary as part of this EWR study1-2
Figure 2.1	Workshop results on PES, Importance and REC for the Mzimvubu Estuary. 2-1

ACRONYMS AND ABBREVIATIONS

BAS Best Attainable State
BHN Basic Human Needs

CSIR Council for Scientific and Industrial Research
DAFF Department of Agriculture, Forestry and Fisheries

DEA Department of Environmental Affairs

DIN Dissolved Inorganic Nitrogen
DIP Dissolved Inorganic Phosphate

DO Dissolved Oxygen

DWAF Department of Water Affairs and Forestry
DWS Department of Water and Sanitation

EC Ecological Category
EcoSpecs Ecological Specifications
EFZ Estuary Functional Zone
EHI Estuarine Health Index

EWR Ecological Water Requirements

GPS Global Positioning System

GRDS Gouritz Reserve Determination Study

MAR Mean Annual Runoff
MSL Mean Sea Level

NMU Nelson Mandela University

NBA 2011 National Biodiversity Assessment 2011

NTU Nephelometric Turbidity Units NWA National Water Act (1998)

PES Present Ecological Status (or State)
REC Recommended Ecological Category

RDM Resource Directed Measures

REI River Estuary Interface

RQOs Resource Quality Objectives

SA South Africa

SANBI South African National Biodiversity Institute

SC&A Scherman Colloty & Associates cc TPC Threshold of Potential Concern

UNEP United Nations Environmental Programme

WIO Western Indian Ocean WMA Water Management Area

WQ Water Quality

WRC Water Research Commission

WRCS Water Resource Classification System

WWTW Wastewater Treatment Works

%ILE Percentile

GLOSSARY

Abundance The total number of individuals of an animal group in an area.

Anthropogenic Originated from humans, e.g. storm-water is an anthropogenic source of

pollution to the sea.

Benthic Bottom-dwelling.

Benthic invertebrates

Invertebrate organisms living in or on sediments of aquatic habitats and

typically retained by a 500 micron sieve.

Biodiversity The variability among living organisms from all sources including, inter alia,

terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part. This includes diversity within species,

between species and of ecosystems.

Biomass The mass of living matter, including stored food, present in a species

population and expressed in terms of a given area or volume of habitat.

Catchment In relation to a watercourse or watercourses or part of a watercourse, this

term means the area from which any rainfall will drain into the watercourse or watercourses or part of a watercourse, through surface flow to a common

point or common points.

Community Assemblage of organisms characterised by a distinctive combination of

species that occupy a common environment and interact with one another.

Community All taxa, plants and animals, present in a community composition.

Contact recreation

Refers to activities such as swimming, diving (scuba and snorkelling), water skiing, surfing, paddle skiing, windsurfing, kite-surfing, parasailing and wet biking. During these activities full body contact with the water and ingestion of water is likely to occur frequently. Tidal pools are also classified as

contact recreation sites.

Crustaceans A large class of mostly water-dwelling arthropods (as lobsters, shrimps,

crabs, wood lice, water fleas, and barnacles) having an exoskeleton of chitin

or chitin and a compound of calcium.

Cumulative impact

Impact on the environment which results from the incremental or combined effects of one or more developmental activities in a specified area over a

particular time period, which may occur simultaneously, sequentially, or in

an interactive manner.

determination and categorisation of the Present Ecological State (PES; health or integrity) of various physical attributes of rivers relative to the natural reference condition. A range of models are used during

EcoClassification, each of which relate to the indicators assessed.

Ecological Water Requirements (EWR) The flow patterns (magnitude, timing and duration) and water quality needed to maintain a riverine ecosystem in a particular condition. This term is used to refer to both the quantity and quality components.

Filter feeder

An organism that uses complex filtering mechanisms to trap food particles suspended in water, e.g. mussels and oysters.

Habitat

The natural home of an organism or community of organisms (this also includes the surrounding area).

Intertidal

Area of the shore between the highest and lowest tides.

Invasive species

A species that does not naturally occur in a specific area and whose introduction does or is likely to cause economic or environmental harm or harm to human health.

Macrophyte

Macroscopic plant life especially of a body of water.

Microalgae

Animals that are retained by a 1 mm mesh-size sieve.

Phytoplankton

Planktonic plant life.

Present Ecological State (PES) The current state or condition of a water resource in terms of its biophysical components (drivers) such as hydrology, geomorphology and water quality and biological responses *viz*. fish, invertebrates, riparian vegetation). The degree to which ecological conditions of an area have been modified from natural (reference) conditions.

Recommended Ecological Category (REC) The Recommended Ecological Category is the future ecological state (Ecological Categories A to D) that can be recommended for a resource unit depending on the Importance and PES. The REC is determined based on ecological criteria and considers Importance, the restoration potential of the system and attainability thereof.

Runoff

Runoff is the water yield from an individual catchment – the sub-catchment plus the runoff from all upstream sub-catchments. Runoff includes any seepage, environmental flow releases and overflows from the reservoirs in a catchment, if they are present - which is not the case in any of the simulations in this project in which baseline catchment conditions are assumed.

Submerged

Covered by water.

Sub-tidal

Area of water body always covered by water and never exposed at low tides.

Supratidal

Area above the spring high tide line on coastlines and estuaries that is regularly splashed but not submerged by ocean water.

Wastewater Water containing solid, suspended or dissolved material (including

sediment) in such volumes, composition or manner that, if spilled or deposited in the natural environment, will cause, or is reasonably likely to

cause, a negative impact.

Zooplankton Plankton composed of animals.

1 INTRODUCTION

1.1 BACKGROUND

The Department of Water and Sanitation (DWS) initiated a study to determine Water Resource Classes and associated Resource Quality Objectives (RQOs) for the Mzimvubu Catchment in Water Management Area 7 (WMA 7) with the Mzimvubu Estuary as the only estuary to be considered in this study. A preliminary Reserve determination has already been done on this estuary (Intermediate level) in 2014 for the DWS Feasibility Study (DWS, 2014a and 2014b). Results from this EWR study therefore inform this Classification study. Methods were as per the official methodology for estuaries (DWAF, 2008; DWA, 2012).

The overall classification study is currently undertaking Step 3 of the Project Plan, i.e. quantify BHN and EWRs. The Estuary EWR Workshop was held on 25 and 26 May 2017 in Port Elizabeth (see Agenda in Appendix A). The purpose of the workshop was to:

- confirm or re-assess the PES and REC building on the results from the previous EWR study (DWS, 2014a and 2014b);
- assess consequences of a selection of future development scenarios provided on the Mzimvubu Estuary as provided by the hydrologist;
- define Ecological Specification and Thresholds of Potential concern (TPCs) for the PES and REC; and
- define monitoring requirements as pertaining to the Mzimvubu Estuary.

This report contains a brief summary of the workshop outputs. Final results will the available in the Estuary EWR Report, RQO and Monitoring reports for the study.

1.2 STUDY AREA

The boundary of South Africa's estuaries incorporates an area known as the estuarine functional zone (EFZ) (Van Niekerk and Turpie, 2012). The estuarine functional zone is defined by the 5m topographical contour (as indicative of 5m above mean sea level). The official EFZ boundary of the Mzimvubu Estuary as per the national requirement is indicated in **Figure 1.1** (blue), defined by:

Downstream boundary:	ary: 31°37'52" S, 29°32'59" E (Estuary mouth)			
Upstream boundary: 31°29'7.15"S, 29°22'59.66"E				
Lateral boundaries:	5 m contour above Mean Sea Level (MSL) along each bank			

Historical references (Day, 1981) suggest an upper boundary of the estuary about 14.5 km upstream from the mouth. It should be noted that the Mzimvubu Estuary mouth may be prone to closure if the river inflow decreases below $\sim 1.0 \, \text{m}^3/\text{s}$.

However, given the conditions (freshwater dominated and minimal saline intrusion) within the system during the survey, the upper limit 5m contour was not applied. Instead, a modified boundary of the system was applied for the purposes of this assessment which encompasses the major estuarine habitats and estuarine support habitats which are found within the estuarine functional zone (**Figure 1.1**, green) which is closely aligned with the historical references.

Figure 1.1 Geographical boundaries of the Mzimvubu Estuary based on the official EFZ (blue) and boundaries used in this EWR study (lower part in green)

NOTE: The official EFZ should be adhered to as a development setback line.

For the purposes of this study, the Mzimvubu Estuary is sub-divided into three distinct zones primarily based on bathymetry (**Figure 1.2**):

- Lower Zone: From mouth to 4 km upstream (34% of volume)
- Middle Zone: From 4 10 km upstream (33% of volume)
- Upper Zone: From 10 14 km upstream (33 % of volume).

Figure 1.2 Zones identified for the Mzimvubu Estuary as part of this EWR study

1.3 WORKSHOP PARTICIPANTS

The following people participated in the Workshop:

Specialist	Affiliation	Area of responsibility
Dr S Taljaard	CSIR, Stellenbosch	Coordinator/Water quality
Ms L van Niekerk	CSIR, Stellenbosch	Physical dynamics
Dr G Snow	University of Witwatersrand (Wits)	Microalgae
Prof J Adams	Nelson Mandela University (NMU)	Macrophytes
Ms Nicky Forbes	Marine and Estuarine Research (MER)	Invertebrates
Mr S Weerts	DAFF	Fish
Dr J Turpie	Anchor Environmental Consultants	Birds

The signed attendance register is attached as Appendix B.

2 KEY WORKSHOP OUTPUTS

2.1 PRESENT ECOLOGICAL STATE AND ECOLOGICAL IMPORTANCE

Estuarine specialists used the revised Reference and Present flow scenarios to re-assess the PES for the Mzimvubu Estuary at the workshop. Results are presented in **Table 2.1.**

	Wt	Score	Wt score
Hydology	0.25	89	22
Hydrodynamics and mouth condition	0.25	98	24
Water quality	0.25	75	19
Physical habitat alteration	0.25	94	23
Habitat health score			89
	Wt	Score	Wt scor
Microalgae	0.2	65	13
Macrophytes	0.2	63	13
Inverts	0.2	95	19
Fish	0.2	77	15
8irds	0.2	61	12
Biotic health score			72
ESTUARINE HEALTH SCORE			81
PRESENT ECOLOGICAL STATUS			В
Estwarine Importance	Wt	Score	Wt score
	0,15	Score 90	Wt scor
Siza	77118	PERCHODINA	processing to our
Size Zonal Type Ranty	0.15	90	14
Size Zonal Type Rarity Habitat diversity	0.15	90 30	14
Estuarine Importance Siza Zonul Type Rarity Habitat diversity Biodiversity importance Functional Importance	0.15 0.10 0.25	90 30 90	3 23
Size Zonal Type Ranty Habitat diversity Biodiversity importance	0.15 0.10 0.25 0.25	90 30 90 73	14 3 23 18
Size Zonal Type Rarity Habitat diversity Biodiversity importance Functional importance	0.15 0.10 0.25 0.25	90 30 90 73	14 3 23 18 25
Size Zonal Type Barity Habitat diversity Biodiversity importance Functional importance ESTUARINE IMPORTANCE SCORE a. Estuary: Input of detritus and nutrients generated in estuary	0.15 0.10 0.25 0.25 0.25	90 30 90 73	14 3 23 18 25
Size Zonal Type Barity Habitat diversity Biodiversity importance Functional importance ESTUARINE IMPORTANCE SCORE	0,15 0.10 0.25 0.25 0.25	90 30 90 73	14 3 23 18 25
Size Zonal Type Rarity Habitat diversity Biodiversity importance Functional importance ESTUARINE IMPORTANCE SCORE a. Estuary: Input of detritus and nutrients generated in estuary b. Nursery function for marine-living flab c. Movement corridor for river invertebrates and flab breeding in see	0.15 0.10 0.25 0.25 0.25 0.25	90 30 90 73	14 3 23 18 25
Size Zonal Type Rarity Habitat diversity Biodiversity importance Functional importance ESTUARINE IMPORTANCE SCORE a. Estuary: Input of detritus and nutrients generated in estuary b. Nursecy function for marine-living flab	0.15 0.10 0.25 0.25 0.25 0.25	90 30 90 73	14 3 23 18 25
Size Zonal Type Rarity Habitat diversity Biodiversity importance Functional importance ESTUARINE IMPORTANCE SCORE a. Estuary: Input of detritus and nutrients generated in estuary b. Nursery function for marine-living flab c. Movement corridor for river invertebrates and fish breeding in see d. Migratory stopover for coastal birds	0.15 0.10 0.25 0.25 0.25 0.28	90 30 90 73	14 3 23 18 25

Figure 2.1 Workshop results on PES, Importance and REC for the Mzimvubu Estuary

As in the 2014 study (DWS, 2014a), the Present Ecological Status of the Mzimvubu Estuary came to an **Ecological Category B**.

Specialists also confirmed the ecological importance rating score of 82, which classify this estuary as **highly important**.

2.2 CONSEQUENCES OF OPERATIONAL SCENARIOS

The various development scenarios provided to the estuary team are summarised in **Table 2.1.** In order to ensure align between reference and present day flow scenarios, and the future development scenarios, the hydrologist on the team re-ran reference and present scenarios. Except for a few minor differences the original and re-run Reference and Present flow simulations, mostly compared favourably.

 Table 2.1
 Description of Mzimvubu present and future scenarios

	<u> </u>	ater Demands 2040)	EWRs		Development O		Options*	MAR	
Scenario	Realistic	Ultimate Development		(Ntab		MWP (Ntabelanga &	Port St Johns	(10 ⁶	% of nMAR
	Projection (a)	Projection (b)	EWR4	EWR1	Lalini EWR (scaled)	Lalini Dams with Hydropower)	Proposed WWTW	m³) '	
Ref								2 737.0	100.0
Pres								2 613.5	95.5
S2a	Yes	No	No	No	No	Yes	No	2 577.3	94.2
S2b	No	Yes	No	No	No	Yes	No	2 536.8	92.7
S32	No	Yes	REC tot	No	REC tot	Yes	No	2 537.4	92.7
S33	No	Yes	REC low	No	REC low	Yes	No	2 537.2	92.7
S41	No	Yes	REC low	REC low	No	Yes	No	2 536.7	92.7
S42	No	Yes	REC low	REC low	REC low	Yes	No	2 537.2	92.7
S51	No	Yes	REC low	REC low	No	Yes – Reduced Hydro in dry months	No	2 536.6	92.7
S52	No	Yes	REC low	REC low	REC low	Yes – Reduced Hydro in dry months	No	2 537.0	92.7
S53	Yes	Yes	REC low	REC low	No	Yes – further reduced Hydro in dry months	No	2536.1	92.7
PresW1	V1 Present river inflow, including 3.5Ml per day WWTW inflow					Yes	2 614.8	95.5	
PresW2	Present inflow, including 4.5Ml per day WWTW inflow					Yes	2 615.1	95.5	
Dam (1.5 MAR)	Large dam 1.5 MAR (Ntabelanga) (previous study's Scenario 3 – DWS, 2014a)					No	2427.8	91	

The chemical composition of the proposed Port St Johns Wastewater Treatment Works (WWTW) discharge in PresW1 and W2 (see **Figure 1.2** for proposed position entering the estuary via a small tributary outside the EFZ) is expected to comply with general standards (DWA, 2013) as follows:

Parameter	General Standards
Estimated flow (Mℓ/day	3.5
Estimated flow (m³/s)	0.04
Total NH ₄ -N (μg/ℓ)	6 000
NO _x -N (μg/ℓ)	15 000
Dissolved inorganic nitrogen (DIN) (μg/ℓ)	21 000
Dissolved inorganic phosphate (DIP) (μg/ℓ)	10 000
Suspended solids (mg/l)	25

Applying the same Estuarine Health Index (EHI) as was applied to obtain the PES, the consequences of each of the future development scenarios are presented in **Table 2.2**.

Table 2.2 Workshop results on consequences of future development scenarios on the Mzimvubu Estuary

	52	a	5	Zh .	58	12	5	33	54	1	54	2	. 55	1	55	52	55	53	PRES	W1	PRI	SWZ	Dam (1.5MAR
	Score		Score		Score		Score	į	Score		Score:													
Hydology	85	21	86	22	85	21	85	21	86	22	85	21	87	22	86	21	97	24	90	22	90	22	84	21
Hydrodynamics/Mouth condition	97	24	97	24	97	24	97	24	97	24	97	24	97	24	97	24	99	25.	98	24	98	24	98	24
Water quality	67	17	67	17	66	17	66	17	67	17	66	17	67	17	66	17	77	19	64	16	61	15	70	18
Physical habitat alteration	93	23	90	23	80	20	85	21	90	23	85	21	90	23	80	20	89	22	-93	23	94	23	89	18 22
Habitat health score		85		85		82		83		85		83		85		82		90		86		86		85
Microsigae	74	15	73	15	68	14	73	15	75	15	71	15	75	15	68	14	68	14	60	12	58	-12	63	13
Mecrophytes	63	13	62	12	58	12	59	12	62	12	59	12	62	12	58	12	62	12	60	12	58	12	62	12
Invertebrates	75	15	75	-35	70	14	75	15	75	15	75	15	75	35	70	14	93	19	85	17	80	16	92	3.8
Fish	64	13	64	13	62	1.2	64	13	64	13	62	12	64	13	62	12	72	14	72	34	68	14	73	15
Birds	62	12	62	12	62	12	62	12	62	12	62	12	62	12	62	12	62	1.2	62	32	62	12	62	1.2
Biotic health score		68		57		64		67		68		66		68		64		71	-0	88	200	65	1	70
ESTUARINE HEALTH SCORE		76		76		73		75		7€		75		76		73		91		77	i .	75		78
ECOLOGICAL CATEGORY		BUC		BAC		B/C		B/C		2/C		8/C		R/C		8/C		8		8/0	2	B/C		BAC

2.3 RECOMMENDATIONS

As for the previous EWR study (DWS, 2014a), specialists confirmed that the REC for this system should be a category B.

The EWR methods for estuaries (DWAF, 2008; DWA, 2012) set the following as a guideline for the Ecological Flow Requirement Scenario: "The recommended Ecological Flow Requirement scenario is defined as the flow scenario (or a slight modification thereof) that represents the highest change in river inflow that will maintain the estuary in the Recommended Ecological Category". **Scenario S53** (i.e. maintaining the system in an Ecological Category B) was therefore selected as the recommended EWR flow scenario for the estuary.

Specialists will set Ecological Specification and TPCs for a **Category B** (i.e. PES and REC) to be captured in the detailed Estuary EWR Report. Also, the EWR report will details recommendations regarding additional baseline studies that are important for the improvement of the confidence of the EWR results. A recommended long-term monitoring programme will be outlined in the Monitoring Report - the purpose of which will be to test for compliance with EcoSpecs and TPCs (or RQOs, as outlined in the RQO report) and to continuously improve understanding of ecosystem function.

3 REFERENCES

Day, J.H. 1981. The nature, origin and classification of estuaries. In: Day JH, editor. Estuarine ecology with particular reference to southern Africa. AA Balkema, Cape Town. pp. 1–6.

Department of Water Affairs and Forestry (DWAF). South Africa. 2008. Water Resource Protection and Assessment Policy Implementation Process. Resource Directed Measures for protection of water resources: Methodology for the Determination of the Ecological Water Requirements for Estuaries. Version 2. Pretoria, South Africa.

Department of Water Affairs (DWA). South Africa. 2012. Water Resource Protection and Assessment Policy Implementation Process. Resource Directed Measures for protection of water resources: Methodology for the Determination of the Ecological Water Requirements for Estuaries. Version 3. Pretoria, South Africa.

Department of Water Affairs (DWA). 2013. Revision of general authorisation in terms of the National Water Act, Government Gazette No. 20526, 8 October 1999. Government Notice No. 665, 6 September 2013.

Department of Water and Sanitation (DWS), South Africa. 2014a. Feasibility Study for the Mzimvubu Water Project Reserve Determination: Volume 2: Estuary DWS Report No: P WMA 12/T30/00/5212/7.

Department of Water and Sanitation (DWS), South Africa. 2014b. Feasibility Study for the Mzimvubu Water Project: Reserve Determination: Volume 3: Estuary Appendices DWS Report No: P WMA 12/T30/00/5212/7.

Van Niekerk, L. and Turpie, J.K. (eds). 2012. National Biodiversity Assessment 2011: Technical Report. Volume 3: Estuary Component. CSIR Report Number CSIR/NRE/ECOS/ER/2011/0045/B. Council for Scientific and Industrial Research, Stellenbosch.

4 APPENDIX A: WORKSHOP AGENDA

DETERMINATION OF WATER RESOURCE CLASSES AND RESOURCE QUALITY OBJECTIVES FOR THE WATER RESOURCES IN THE MZIMVUBU

CATCHMENT: ESTUARY SPECIALIST WORKSHOP

	QUANTIFY ECOLOGICAL WATER REQUIREMENTS FOR THE MZIMVUBU ESTUARY - 25 and 26 MAY 2017
25/26 May 2017	Specialist Workshop
VENUE	Sir Roy's Guesthouse in Walmer, Port Elizabeth
OBJECTIVES	A 2-day specialist workshop to confirm the PES and REC for the Mzimvubu Estuary (as allocated in the EWR study conducted on the estuary in 2014), and to assess the consequences of future scenarios as presented to the estuarine tear by the study yield modelling team. The Estuary Templates (as per the official DWS methodology) will be completed by a specialist. In addition this workshop will produce the monitoring programme templates for the Mzimvubu Estuary and EcoSpecs for the PES and REC.

25 May 2017	Duration (min)	Item	Presenters
10:00 - 10:15	15 min	Purpose and overview of workshop	Susan Taljaard
10:15 - 10:45	30 min	Overview of Hydrological Scenarios provided to estuarine team	Lara van Niekerk
10:45 - 11:30	45 min	Hydrodynamic/Sediment Component (confirmation of PES and Future Scenarios)	Lara van Niekerk
11:30 - 12:00	30 min	Water Quality component (confirmation PES and Future Scenarios)	Susan Taljaard
12:00 - 12:30	30 min	Microalgae component (confirmation of PES and Future Scenarios)	Gavin Snow
12:30 - 13:00	30 min	Macrophyte (confirmation of PES and Future Scenarios)	Janine Adams
13:00 - 14:00		LUNCH	
14:30 - 14:30	30 min	Invertebrate component (confirmation of PES and Future Scenarios)	Nicky Forbes
14:30 - 15:00	30 min	Fish component (confirmation of PES and Future Scenarios)	Steven Weerts
15:00 - 15:30	30 min	Birds component (confirmation of PES and Future Scenarios)	Jane Turpie
15:30 - 16:00		TEA/COFFEE BREAK	
16:00 - 16:30	30 min	Confirmation of overall PES, Importance and REC	All
16:30		CLOSURE FOR DAY	

26 May 2017	Duration (min)	Item	Presenters
8:30 - 9:00	30 min	Selection and agreement on REC Flow Scenario	Lara van Niekerk
9:00 - 9:30	30 min	Overview of requirements for EcoSpecs and monitoring templates	Susan Taljaard
9:30 - 10:30	60 min	Specialists work on individual EcoSpec templates for PES and REC	All
10:30 - 11:00		TEA/COFFEE BREAK	
11:00 - 12:00	60 min	Specialists work on individual Monitoring templates	All
12:00 - 13:00	60 min	Feeb-back on EcoSpec and Monitoring templates (plenary)	All
13:00 - 14:00		LUNCH	Į.
14:00 - 15:00	60 min	Finalisation of Templates/Due dates for outstanding Deliverables	Susan Taljaard
15:00		CLOSURE OF WORKSHOP	

	THURSDAY	r, 25 May 2017			
Name and Surname	Organisation	Email Address	Signature		
Susan Tiljaand	CSIR	stallour acsir 10 24	S. Walipard		
Jenine Adams	NMMU	Janho - adams Danus a			
Strum 11 xests	GIR	Samuet Posice is to	ttu		
CAUN SUOW	WITS	CAUW. SNOW CLUTS AC ZA	2000		
Norther Forbes	MER	nucolattaco mar coos	(ZX)		
Mary Thopic	Arrive/	pare to harby encountered and	· /		
Loa was Nichh	CSIR	Juniter Desicrose	2		
		The second secon			

FRIDAY, 26 May 2017									
Name and Sumame	Organisation	Email Address	Signature						
Susan Talload	CSIR	staljour A csin co. za.	S. Tolyan M.						
CAUL SUOW	Urts	GAVIN SNOW C UITS ACZA	000						
Steven WEERING	COR	Severts @ ESIT. La 30	Atrice -						
Januar Apparas	NMMU	prine adena@ amous us 20	Sections						
Greatette Forbes	HER	"nicotelete mer ca 3 p	ale,						
June Tuyie	Anchor	jane@ancharminonmental							
Loan Wiell	CSICZ	Lunieten Core in Zu	60						
William Control of									